1,540 research outputs found

    ^{75}As NMR study of the growth of paramagnetic-metal domains due to electron doping near the superconducting phase in LaFeAsO_{1-x}F_{x}

    Get PDF
    We studied the electric and magnetic behavior near the phase boundary between antiferromagnetic (AF) and superconducting (SC) phases for a prototype of high-T_c pnictides LaFeAsO_{1-x}F_{x} by using nuclear magnetic resonance, and found that paramagnetic-metal (PM) domains segregate from AF domains. PM domains grow in size with increasing electron doping level and are accompanied by the onset of superconductivity, and thus application of pressure or increasing the doping level causes superconductivity. The existence of PM domains cannot be explained by the existing paradigm that focuses only on the relationship between superconductivity and antiferromagnetism. Based on orbital fluctuation theory, the existence of PM domains is evidence of the ferroquadrupole state.Comment: 5 figure

    Potential Profiling of the Nanometer-Scale Charge Depletion Layer in n-ZnO/p-NiO Junction Using Photoemission Spectroscopy

    Full text link
    We have performed a depth-profile analysis of an all-oxide p-n junction diode n-ZnO/p-NiO using photoemission spectroscopy combined with Ar-ion sputtering. Systematic core-level shifts were observed during the gradual removal of the ZnO overlayer, and were interpreted using a simple model based on charge conservation. Spatial profile of the potential around the interface was deduced, including the charge-depletion width of 2.3 nm extending on the ZnO side and the built-in potential of 0.54 eV

    Lessons From the Current Japanese Triple Helix Model

    Full text link
    Since mid-1990s, the Japanese government has encouraged university-industry collaboration to foster innovations for economic growth. Learning from the American licensing model of technology transfer, Japanese Bay-Dole Act and TLO (Technology Licensing Organization) Act were enacted in late 1990s. In addition, the corporatization of Japanese National Universities (JNUs) in 2004 spurred their technology-transfer activities to obtain external funds. As a result, more than 50 TLOs has been established since FY1998, and also the number of patent application and licensed patents were increased at JUNs rapidly after FY2004. However, the licensing income has been stayed poor and some of TLOs were abolished. There are few evidences that the introduction of licensing model of technology transfer into Japan could contribute to innovation properly. Therefore, this study will try to clarify if licensing model of technology transfer work in Japan by analyzing the Japanese National University (JNU) patent. There are 20,485 applied patent, which invented by JNU's researcher(s) from FY2004 to 2007. 38% of them were applied by solely by JNUs and 52% were by JNU and Private Firms etc. In the Japanese Patent Act, jointly applied patents are not licensed to the third party without the consent of co-applicant(s). Hence, more than half of the patent invented by JNU researchers is not basically used for patent licensing. Consequently, JNUs and TLOs face difficulties in patent licensing under the current Patent Act

    Detection of antiferromagnetic ordering in heavily doped LaFeAsO1-xHx pnictide superconductors using nuclear-magnetic-resonance techniques

    Get PDF
    We studied double superconducting (SC) domes in LaFeAsO1-xHx by using 75As- and 1H-nuclear magnetic resonance techniques, and unexpectedly discovered that a new antiferromagnetic (AF) phase follows the double SC domes on further H doping, forming a symmetric alignment of AF and SC phases in the electronic phase diagram. We demonstrated that the new AF ordering originates from the nesting between electron pockets, unlike the nesting between electron and hole pockets as seen in the majority of undoped pnictides. The new AF ordering is derived from the features common to high-Tc pnictides: however, it has not been reported so far for other high-Tc pnictides because of their poor electron doping capability.Comment: 5 figures, in press in PR

    Origin of critical-temperature enhancement of an iron-based high-T_c superconductor, LaFeAsO_{1-x}F_{x} : NMR study under high pressure

    Get PDF
    Nuclear magnetic resonance (NMR) measurements of an iron (Fe)-based superconductor LaFeAsO_{1-x}F_x (x = 0.08 and 0.14) were performed at ambient pressure and under pressure. The relaxation rate 1/T_1 for the overdoped samples (x = 0.14) shows T-linear behavior just above T_c, and pressure application enhances 1/T_1T similar to the behavior of T_c. This implies that 1/T_1T = constant originates from the Korringa relation, and an increase in the density of states at the Fermi energy D(E_F) leads to the enhancement of T_c. In the underdoped samples (x = 0.08), 1/T_1T measured at ambient pressure also shows T-independent behavior in a wide temperature range above T_c. However, it shows Curie-Weiss-like T dependence at 3.0 GPa accompanied by a small increase in T_c, suggesting that predominant antiferromagnetic fluctuation suppresses development of superconductivity or remarkable enhancement of T_c. The qualitatively different features between underdoped and overdoped samples are systematically explained by a band calculation with hole and electron pockets

    Magnetic order in CaFe1-xCoxAsF (x = 0, 0.06, 0.12) superconductor compounds

    Get PDF
    A Neutron Powder Diffraction (NPD) experiment has been performed to investigate the structural phase transition and magnetic order in CaFe1-xCoxAsF superconductor compounds (x = 0, 0.06, 0.12). The parent compound CaFeAsF undergoes a tetragonal to orthorhombic phase transition at 134(3) K, while the magnetic order in form of a spin-density wave (SDW) sets in at 114(3) K. The antiferromagnetic structure of the parent compound has been determined with a unique propagation vector k = (1,0,1) and the Fe saturation moment of 0.49(5)uB aligned along the long a-axis. With increasing Co doping, the long range antiferromagnetic order has been observed to coexist with superconductivity in the orthorhombic phase of the underdoped CaFe0.94Co0.06AsF with a reduced Fe moment (0.15(5)uB). Magnetic order is completely suppressed in optimally doped CaFe0.88Co0.12AsF. We argue that the coexistence of SDW and superconductivity might be related to mesoscopic phase separation.Comment: 4pages, 4figure

    Quantum critical behavior in heavily doped LaFeAsO1x_{1-x}Hx_x pnictide superconductors analyzed using nuclear magnetic resonance

    Get PDF
    We studied the quantum critical behavior of the second antiferromagnetic (AF) phase in the heavily electron-doped high-TcT_c pnictide, LaFeAsO1x_{1-x}Hx_x by using 75^{75}As and 1^{1}H nuclear-magnetic-resonance (NMR) technique. In the second AF phase, we observed a spatially modulated spin-density-wave-like state up to xx=0.6 from the NMR spectral lineshape and detected a low-energy excitation gap from the nuclear relaxation time T1T_1 of 75^{75}As. The excitation gap closes at the AF quantum critical point (QCP) at x0.49x \approx 0.49. The superconducting (SC) phase in a lower-doping regime contacts the second AF phase only at the AF QCP, and both phases are segregated from each other. The absence of AF critical fluctuations and the enhancement of the in-plane electric anisotropy are key factors for the development of superconductivity.Comment: accepted in Phys. Rev.
    corecore